一作及通讯成果: [1] H. Guo, P. Yuan, J. Zhao, J. Zhao, Q. Peng, R. Song*, First-principles studies of monolayers MoSi2N4 decorated with transition metal single-atom for visible light-driven high-efficient CO2 reduction by strain and electronic engineering, Chemical Engineering Journal, (2022), 450, 138198. [2] H. Guo, L. Li, X. Wang, G. Yao, H. Yu, Z. Tian*, B. Li*, L. Chen*, Theoretical Investigation on the Single Transition-Metal Atom-Decorated Defective MoS2 for Electrocatalytic Ammonia Synthesis, ACS Applied Materials & Interfaces, (2019), 11, 36506-36514. [3] H. Guo, H. Zhang, J. Zhao, P. Yuan, Y. Li, Y. Zhang, L. Li, S. Wang, R. Song*, Two-Dimensional WO3-Transition-Metal Dichalcogenide Vertical Heterostructures for Nitrogen Fixation: A Photo(Electro) Catalysis Theoretical Strategy, Journal of Physical Chemistry C, (2022), 126, 3043-3053. [4] H. Guo, P. Yuan, M. Xu, Y. Zhang, R. Song*, Toward Rational Design of the Two-Dimensional h-WO3/ZrGe2P4 Heterostructure for N2/CO2 Reduction: Incorporating Multiple Electronic Modulation Engineering, Journal of Physical Chemistry C, (2023), 127(30), 14784-14796 [5] B. Li*, H. Guo, Y. Wang, W. Zhang, Q. Zhang, L. Chen, X. Fan, W. Zhang, Y. Li, W.-M. Lau*, Asymmetric MXene/monolayer Transition Metal Dichalcogenide Heterostructures for Functional Applications, npj Computational Materials, (2019), 5, 16. [6] H. Du†, H. Guo†, K. Wang, X. Du, B.A. Beshiwork, S. Sun, Y. Luo, Q. Liu, T. Li*, X. Sun*, Durable Electrocatalytic Reduction of Nitrate to Ammonia over Defective Pseudobrookite Fe2TiO5 Nanofibers with Abundant Oxygen Vacancies, Angewandte Chemie International Edition, (2023), e202215782. [7] H. Zhang†, H. Guo†, Y. Li, Q. Zhang, L. Zheng, L. Gu, R. Song*, The Guest Doping Effects of Fe on Bimetallic NiCo Layered Double Hydroxide for Enhanced Electrochemical Oxygen Evolution Reaction: Theoretical Screening and Experimental Verification, Advanced Functional Materials, (2023). 2304403. [8] L. Li†, H. Guo†, G. Yao, C. Hu, C. Liu, Z. Tian*, B. Li*, Q. Zhang, L. Chen*, Visible/infrared light-driven high-efficiency CO2 conversion into ethane based on a B–Co synergistic catalyst, Journal of Materials Chemistry A, (2020), 8, 22327-22334. [9] H. Xian†, H. Guo†, J. Xia†, Q. Chen, Y. Luo, R. Song, T. Li*, E. Traversa, Iron-Doped MoO3 Nanosheets for Boosting Nitrogen Fixation to Ammonia at Ambient Conditions, ACS Applied Materials & Interfaces, (2021), 13, 7142-7151. [10] R. Zhang†, H. Guo†, L. Yang, Y. Wang, Z. Niu, H. Huang, H. Chen, L. Xia, T. Li, X. Shi, X. Sun*, B. Li, Q. Liu, Electrocatalytic N2 Fixation over Hollow VO2 Microspheres at Ambient Conditions, ChemElectroChem, (2019), 6, 1014-1018. [11] X. He†, H. Guo†, X. Zhang, T. Liao, Y. Zhu, H. Tang*, T. Li*, J.S. Chen*, Facile electrochemical fabrication of magnetic Fe3O4 for electrocatalytic synthesis of ammonia used for hydrogen storage application, International Journal of Hydrogen Energy, (2021), 46, 24128-24134. [12] S. Dong, A. Niu, K. Wang, P. Hu, H. Guo*, S. Sun, Y. Luo, Q. Liu, X. Sun*, T. Li*, Modulation of oxygen vacancy and zero-valent zinc in ZnCr2O4 nanofibers by enriching zinc for efficient nitrate reduction, Applied Catalysis B: Environmental, (2023), 333, 122772. [13] Y. Zhang*, H. Guo*, M. Song, L. Sun, R. Song*, Modulation of the morphology and electronic structure of Ni3S2 nano-forests via P and Mo co-doping in polyoxometalates to promote the urea oxidation reaction, Journal of Materials Chemistry A, (2023), 11, 3584-3593. [14] B. Admasu Beshiwork, X. Wan, M. Xu, H. Guo*, B. Sirak Teketel, Y. Chen, J. Song Chen, T. Li*, E. Traversa, A defective iron-based perovskite cathode for high-performance IT-SOFCs: Tailoring the oxygen vacancies using Nb/Ta co-doping, Journal of Energy Chemistry, (2024), 88, 306-316. [15] T. Li*, J. Xia, Q. Chen, K. Xu, Y. Gu, Q. Liu, Y. Luo, H. Guo*, E. Traversa, Monodisperse Cu Cluster-Loaded Defective ZrO2 Nanofibers for Ambient N2 Fixation to NH3, ACS Applied Materials & Interfaces, (2021), 13, 40724-40730. [16] T Z. Zhang, T. Wang, J. Song Chen, K. Dong, S. Sun, Y. Luo, H. Guo*, X. Sun, T. Li*, Cr3C2 nanoparticles decorated carbon nanofibers for efficient nitrate reduction to ammonia at ambient conditions, Journal of Colloid and Interface Science, (2023), 648, 693-700. [17] Y. Zhang*, H. Guo*, M. Song, Z. Qiu, S. Wang, L. Sun, Hierarchical interfaces engineering-driven of the CoS2/MoS2/Ni3S2/NF electrode for high-efficient and stable oxygen evolution and urea oxidation reactions, Applied Surface Science, (2023), 617, 156621. [18] P. Hu, S. Hu, H. Du, Q. Liu, H. Guo*, K. Ma, T. Li*, Efficient electrocatalytic reduction of nitrate to ammonia over fibrous SmCoO3 at ambient conditions, Chemical Communications, (2023). 59(38), 5697-5700. [19] Q. Chen, J. Liang, L. Yue, Y. Luo, Q. Liu, N. Li, A.A. Alshehri, T. Li*, H. Guo*, X. Sun, CoO nanoparticle decorated N-doped carbon nanotubes: a high-efficiency catalyst for nitrate reduction to ammonia, Chemical Communications, (2022), 58, 5901-5904. [20] J. Xia, H. Du, S. Dong, Y. Luo, Q. Liu, J.S. Chen, H. Guo*, T. Li*, Heterogenous Cu@ZrO2 nanofibers enable efficient electrocatalytic nitrate reduction to ammonia under ambient conditions, Chemical Communications, (2022), 58, 13811-13814. [21] T. Li*, J. Xia, H. Xian, Q. Chen, K. Xu, Y. Gu, Y. Luo, Q. Liu, H. Guo*, E. Traversa, Fe(III) grafted MoO3 nanorods for effective electrocatalytic fixation of atmospheric N2 to NH3, International Journal of Hydrogen Energy, (2022), 47, 3550-3555. [22] X. Du, K. Wang, T. Wang, H. Guo*, J.S. Chen, J. Wang, T. Li*, Constructing n-type TiO2 by Nb doping for electrocatalytic nitrate reduction to ammonia at ambient conditions, International Journal of Hydrogen Energy, (2023), 48(95), 37077-37085. [23] S. Dong, J. Xia, H. Zhu, X. Du, Y. Gu, Q. Liu, Y. Luo, Q. Kong, H. Guo*, T. Li*, E. Traversa, ZrO2/C Nanosphere Enables High-Efficiency Nitrogen Reduction to Ammonia at Ambient Conditions, ChemCatChem, (2022), 14, e202200458. [24] H. Zhu, S. Dong, X. Du, H. Du, J. Xia, Q. Liu, Y. Luo, H. Guo*, T. Li*, Defective CuO-rich CuFe2O4 nanofibers enable the efficient synergistic electrochemical reduction of nitrate to ammonia, Catalysis Science & Technology, (2022), 12, 4998-5002. [25] T. Li*, Q. Chen, J. Yu, J. Xia, Y. Li, K. Xu, Y. Luo, Q. Liu, H. Guo*, YF3: a nanoflower-like catalyst for efficient nitrogen fixation to ammonia under ambient conditions, Catalysis Science & Technology, (2021), 11, 6750-6754. [26] Y. Gu, Q. Chen, X. Ju, Z. Zhang, P. Hu, H. Guo*, T. Li*, CoO (111) nanowire arrays for High-efficiency electrochemical nitrate reduction to ammonia, Materials Letters, (2023), 341, 134252. |